

Agenda



- What is NASA's mission?
- Why do we explore?
- What is our time line?
- Why the Moon first?
- What will the vehicles look like?
- What progress have we made?
- Who is on our team?
- What are the benefits of space exploration?

What is NASA's Mission?

- Safely fly the Space Shuttle until 2010
- Complete the International Space Station (ISS)
- Develop a balanced program of science, exploration, and aeronautics
- Develop and fly the Orion Crew Exploration Vehicle (CEV)
 - Designed for exploration but will initially service ISS
- Land on the Moon no later than 2020
- Promote international and commercial participation in exploration

"The next steps in returning to the Moon and moving onward to Mars, the near-Earth asteroids, and beyond, are crucial in deciding the course of future space exploration. We must understand that these steps are incremental, cumulative, and incredibly powerful in their ultimate effect."

-Former NASA Administrator Michael Griffin October 24, 2006

Why Do We Explore?

Inspiration

 Inspire students to explore, learn, contribute to our nation's economic competitiveness, and build a better future

Innovation

 Provide opportunities to develop new technologies, new jobs, and new markets

Discovery

 Discover new information about ourselves, our world, and how to manage and protect it

NASA's Exploration Roadmap

05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25...

Exploration and Science Lunar Robotics Missions Lunar Outpost Buildup Research and Technology Development on ISS Commercial Orbital Transportation Services for ISS Space Shuttle Operations **SSP Transition** Ares I and Orion Development **Operations Capability Development** (EVA Systems, Ground Operations, Mission Operations) Orion and Ares I Production and Operation Ares I X **Test Flight April 2009** Altair Development Ares V & Earth Departure Stage **Surface Systems Development**

The Moon

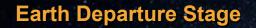
Lunar missions allow us to:

- Gain exploration experience
 - Space no longer a short-term destination
 - Will test human support systems
 - Use Moon to prove ability to build and repair long-duration space assets
- Develop exploration technologies
 - Launch and exploration vehicles
 - In-situ resource utilization
 - Power and robotic systems
- Conduct fundamental science
 - Astronomy, physics, astrobiology, geology, exobiology

The Next Step in Fulfilling Our Destiny as Explorers

Ambassador STD

There Are Many Places To Explore


Far Side

South Pole

Near Side

Our Exploration Fleet What Will the Vehicles Look Like?

Ares I
Crew Launch
Vehicle

Orion
Crew Exploration
Vehicle

Building on a Foundation of Proven Technologies - Launch Vehicle Comparisons -Crew **Altair** Lunar Lander Orion **Earth Departure** Stage (EDS) (1 J 2X) 253.0 mT (557.7K lbm) LOX/LH₂ SIVB (1 J 2 engine) **Upper Stage** 108.9 mT (1 J 2X)(240.0K 137.0 mT LOX/LH₂ (302K lbm) LOX/LH₂ SII (5 J 2 engines) 453.6 mT **Core Stage 5 Seament** (1,000.0K lbm) (6 RS 68 Engines) Reusable LOX/LH_a 1,587.3 mT Solid Rocket (3,499.5K lbm) **Booster** SIC LOX/LH₂ (RSRB) (5 F 1) 1.769.0 mT 2 5.5 Segment

Space Shuttle

Height: 56.1 m (184.2 ft)
Gross Liftoff Mass:
2,041.1 mT (4,500.0K lbm)
Payload Capability:
25.0 mT (55.1K lbm) to
Low Earth Orbit (LEO)

Ares I

Height: 99.1 m (325 ft) Gross Liftoff Mass: 927.1 mT (2,044.0K lbm) Payload Capability: 25.5 mT (56.2K lbm) to LEO

Ares V

RSRBs

Saturn V

Height: 110.9 m (364 ft) Gross Liftoff Mass: 2,948.4 mT (6,500K lbm) Payload Capability: 44.9 mT (99K kbm) to TLI 118.8 mT (262K lbm) to LEO

DAC 2 TR 6 LV 51.00.48

122 m – (400 ft)

91 m -

61 m -

30 m -

(100 ft)

(200 ft)

(300 ft)

Overall Vehicle Height, m (ft)

(3,900.0K lbm)

LOX/RP 1

Ares I Elements

Encapsulated Service Module (ESM) Panels

Instrument Unit

- Primary Ares I control avionics system
- NASA Design /

Boeing Production (\$0.8B)

Stack Integration

- 927.1 mT (2,044.0K lbm) gross liftoff mass (GLOM)
- 99.1 m (325.0 ft) in length
- NASA-led

First Stage

- Derived from current Shuttle RSRM/B
- Five segments/Polybutadiene Acrylonitrile (PBAN) propellant
- Recoverable
- New forward adapter
- Avionics upgrades
- ATK Launch Systems (\$1.96B)

Upper Stage

Orion CEV

- 137.1 mT (302.2K lbm) LOX/LH₂ prop
- 5.5-m (18-ft) diameter
- Aluminum-Lithium (Al-Li) structures
- Instrument unit and interstage
- Reaction Control System (RCS) / roll control for first stage flight
- Primary Ares I control avionics system
- NASA Design / Boeing Production (\$1.14B)

Upper Stage Engine

Interstage

- Saturn J-2 derived engine (J-2X)
- Expendable
- Pratt and Whitney Rocketdyne (\$1.28B)

Orion Crew Exploration Vehicle

Launch Abort System Attitude Control Motor (Eight Nozzles)

Canard Section — (Stowed Configuration)

Jettison Motor (Four Aft, Scarfed Nozzles)

Abort Motor (Four Exposed, Reverse Flow Nozzles)

Crew Module

LOCKHEED MARTIN

Volume: 115.8 m³ (380 ft³)

- 80% larger than Apollo

Diameter: 5.0 m (16.4 ft)

Encapsulated Service Module (ESM) Panels

Service Module

Spacecraft Adapter

Ares V Elements

Stack Integration

• 3,704.5 mT (8,167.1K lbm) gross liftoff mass

• 116.2 m (381.1 ft) in length

EDS

J-2X

Loiter Skirt

Interstage

Payload

Fairing

Earth Departure Stage (EDS)

 One Saturn-derived J-2X LOX/LH₂ engine (expendable)

- 10-m (33-ft) diameter stage
- Aluminum-Lithium (Al-Li) tanks
- Composite structures, instrument unit and interstage
- Primary Ares V avionics system

Solid Rocket Boosters

 Two recoverable 5.5-segment PBAN-fueled boosters (derived from current Ares I first stage)

Core Stage

- Six Delta IV-derived RS-68 LOX/LH₂ engines (expendable)
- 10-m (33-ft) diameter stage
- Composite structures
- · Aluminum-Lithium (Al-Li) tanks

Ambassador STD 1

What Progress Have We Made?

Programmatic Milestones

- Completed Ares I System Requirements Reviews
- Contracts awarded for building the first stage, J-2X engine, upper stage, instrument unit, and Orion
- Completed Ares I System Definition Review
- Completed Ares I Preliminary Design Review
- Ares I-X test flight scheduled for 2009

Technical Accomplishments

- Testing first stage parachutes and developing nozzles
- Constructing new J-2X test stand at Stennis Space Center
- Performing J-2X injector tests and power pack tests
- Fabricating Ares I-X hardware
- Testing in wind tunnels

Nozzle Burnthrough Test

Ares I-X Test Flight

- Demonstrate and collect key data to inform the Ares I design:
 - Vehicle integration, assembly, and KSC launch operations
 - Staging/separation
 - Roll and overall vehicle control
 - Aerodynamics and vehicle loads
 - First stage entry dynamics for recovery
- Performance Data:

	Ares I-X	Ares I
First Stage Max. Thrust (vacuum):	14.1 MN	15.8 MN
Max. Speed:	Mach 4.7	Mach 5.84
Staging Altitude:	39,600 m (130K ft)	57,700 m (188K ft)
Liftoff Weight:	816 mT (1,799K lbm)	927 mT (2,044K lbm)
Length:	99.7 m (327 ft)	99.1 m (325 ft)
Max. Acceleration:	2.46 g	3.79 g

Aeronautics and Space Administration
Ambassador STD 15

Down-to-Earth Benefits from the Space Economy

NASA powers innovation that creates new jobs, new markets, and new technologies.

Personal Health

- Eye tracker for LASIK surgery
- Breast biopsy system

Consumer Products

- Wireless light switch
- Remote appliance programmer
- Global Positioning Systems (GPSs)

Environmental

- Water Filtration system
- Environmentally friendly chemical cleanup

Security

- Stair-climbing tactical robot
- Crime scene video enhancement

For more information see http://technology.jsc.nasa.gov

Every Dollar Invested in Space is Spent on Earth.

National Aeronautics and Space Administration
Ambassador STD 17

NASA Explores for Answers that Power Our Future

NASA powers inspiration that encourages future generations to explore, learn, and build a better future

- NASA relies on a well-educated U.S. workforce to carry out missions of scientific discovery that improve life on Earth
- America's technological edge is diminishing
 - Fewer engineering graduates from U.S. colleges and universities
 - More engineering and science graduates in other countries
- The global marketplace is increasingly competitive and technology-driven
- Students need motivating goals and teachers with information to share
- NASA continues to develop educational tools and experiences that inspire, educate, and motivate
- Space exploration offers new economic opportunities through technology and resource development

Summary

- The Ares family will provide the U.S. with unprecedented exploration capabilities
 - Can inject almost 60% more mass to the Moon than Apollo/Saturn
- The Ares team has made significant progress since its inception in October 2005
 - Full team is onboard
 - All major milestones met to-date, with CDR scheduled for 2010
 - Ares I-X test flight is on schedule for 2009
- We are making extensive use of lessons learned to minimize cost, technical, and schedule risks
- The NASA-led / Contractor partnership is very effective in developing the Ares I

Ambassador STD 19

National Aeronautics and Space Administration

